Discovering Overlapping Quantitative Associations by Density-Based Mining of Relevant Attributes

نویسندگان

  • Thomas Van Brussel
  • Emmanuel Müller
  • Bart Goethals
چکیده

Association rule mining is an often used method to find relationships in the data and has been extensively studied in the literature. Unfortunately, most of these methods do not work well for numerical attributes. State-of-the-art quantitative association rule mining algorithms follow a common routine: (1) discretize the data and (2) mine for association rules. Unfortunately, this two-step approach can be rather inaccurate as discretization partitions the data space. This misses rules that are present in overlapping intervals. In this paper, we explore the data for quantitative association rules hidden in overlapping regions of numeric data. Our method works without the need for a discretization step, and thus, prevents information loss in partitioning numeric attributes prior to the mining step. It exploits a statistical test for selecting relevant attributes, detects relationships of dense intervals in these attributes, and finally combines them into quantitative association rules. We evaluate our method on synthetic and real data to show its efficiency and quality improvement compared to state-of-the-art methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density-Based Spatial Clustering – A Survey

Spatial data mining is the task of discovering knowledge from spatial data. Density-Based Spatial Clustering occupies an important position in spatial data mining task. This paper presents a detailed survey of density-based spatial clustering of data. The various algorithms are described based on DBSCAN comparing them on the basis of various attributes and different pitfalls. The advantages and...

متن کامل

Mining Quantitative Maximal Hyperclique Patterns: A Summary of Results

Hyperclique patterns are groups of objects which are strongly related to each other. Indeed, the objects in a hyperclique pattern have a guaranteed level of global pairwise similarity to one another as measured by uncentered Pearson’s correlation coefficient. Recent literature has provided the approach to discovering hyperclique patterns over data sets with binary attributes. In this paper, we ...

متن کامل

A Fuzzy Mining Algorithm for Association-Rule Knowledge Discovery

A Fuzzy Mining Algorithm for Association-Rule Knowledge Discovery" (2005). ABSTRACT ABSTRASCT Due to increasing use of very large database and data warehouses, discovering useful knowledge from transactions is becoming an important research area. On the other hand, using fuzzy classification in data mining has been developed in recent years. Hong and Lee proposed a general learning method that ...

متن کامل

Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain

Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...

متن کامل

MINING FUZZY TEMPORAL ITEMSETS WITHIN VARIOUS TIME INTERVALS IN QUANTITATIVE DATASETS

This research aims at proposing a new method for discovering frequent temporal itemsets in continuous subsets of a dataset with quantitative transactions. It is important to note that although these temporal itemsets may have relatively high textit{support} or occurrence within particular time intervals, they do not necessarily get similar textit{support} across the whole dataset, which makes i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016